Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119336, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33385972

RESUMEN

Porcine parvovirus (PPV) is one of the major infectious causes of reproductive failure of swine. This disease is characterized by embryonic and fetal infection and death, responsible for important economic losses. PPV is also implicated as a trigger in the development of post-weaning multisystemic wasting syndrome (PMWS) caused by Porcine circovirus type 2 (PCV2). Their detection is PCR-based, which is quite sensitive and specific, but laborious, costly and time-demanding. Therefore, this study aimed to assess Raman spectroscopy (RS) as a diagnostic tool for PPV and PCV2 due to its label-free properties and unique ability to search and identify molecular fingerprints. Briefly, swine testis (ST) cells were inoculated with PPV or PCV2 and in vitro cultured (37 °C, 5% CO2) for four days. Fixed cells were then submitted to RS investigation using a 633 nm laser. A total of 225 spectra centered at 1300 cm-1 was obtained for each sample (5 spectra/cell; 15 cells/replicate; 3 replicates) of PPV-, PCV2-infected and uninfected (control) ST cells. Clear statistical discrimination between samples from both virus-infected cells was achieved with a Principal Component - Linear Discriminant Analysis (PCA-LDA) model, reaching sensitivity rates from 95.55% to 97.77%, respectively to PCV2- and PPV-infected cells. These results were then submitted to a Leave-One-Out (LOO) validation algorithm resulting in 99.97% of accuracy. Extensive band assignment was analyzed and compiled for better understanding of PPV and PCV2 virus-cell interaction, demonstrating that specific protein, lipids and DNA/RNA bands are the most important assignments related to discrimination of virus-infected from uninfected cells. In conclusion, these results represent promising bases for RS application on PCV2 and PPV detection for future diagnostic applications.


Asunto(s)
Circovirus , Infecciones por Parvoviridae , Parvovirus Porcino , Enfermedades de los Porcinos , Síndrome Debilitante , Animales , Circovirus/genética , ADN Viral/genética , Masculino , Parvovirus Porcino/genética , Espectrometría Raman , Porcinos , Enfermedades de los Porcinos/diagnóstico
2.
Mol Reprod Dev ; 85(11): 810-820, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29956856

RESUMEN

Exposure of the preimplantation embryo to heat stress triggers a series of cellular, molecular, and adaptive changes preventing a normal embryonic development. Heat stress disrupts the embryo cytoskeleton, intracellular calcium levels, mitochondrial function, and induces apoptosis. Moreover, heat stress can act indirectly through induction of reactive oxygen species (ROS), leading to a variety of cellular damage. Embryonic resistance to heat shock is determined by factors such as genotype, developmental stage, apoptosis, redox status, and regulatory molecules. The early embryo is very susceptible to heat stress; it acquires resistance to elevated temperature as development advances. One of the mechanisms involved in the developmental acquisition of thermotolerance is heat-induced apoptosis, which acts as a quality control mechanism to remove damaged blastomeres allowing the embryo to survive after stress. Although embryos at >8-cell stage can activate the apoptotic cascade as an adaptive response to stress, embryos at the two-cell stage are resistant to proapoptotic signals. This lack of apoptotic response has been associated to mitochondrial resistance to depolarization and epigenetic regulations, such as DNA methylation and histone deacetylation. Even though the cellular mechanisms triggered by heat stress have been studied, very little attention has been paid to the vulnerability of the epigenome to drastic temperature changes during the preimplantation period. Therefore, this review aims to characterize the effects of elevated temperature on the bovine embryo, especially addresissing developmental, cellular, and epigenetic alterations triggered in response to temperature.


Asunto(s)
Blastocisto/metabolismo , Desarrollo Embrionario , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Respuesta al Choque Térmico , Animales , Bovinos , Femenino , Embarazo
3.
Wiley Interdiscip Rev Dev Biol ; 5(2): 210-32, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26799266

RESUMEN

The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website.


Asunto(s)
Blastocisto/citología , Animales , Evolución Biológica , Blastocisto/metabolismo , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Mamíferos/embriología , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...